Physics at Hadron Colliders

Lecture III

Beate Heinemann

University of California, Berkeley and Lawrence Berkeley National Laboratory

Outline

- Lecture I: Introduction
 - Outstanding problems in particle physics
 - and the role of hadron colliders
 - Current colliders: Tevatron and LHC
 - Hadron-hadron collisions
- Lecture II: Standard Model Measurements
 - Tests of QCD
 - Precision measurements in electroweak sector
- Lecture III: Searches for the Higgs Boson
 - Standard Model Higgs Boson
 - Higgs Bosons beyond the Standard Model
- Lecture IV: Searches for New Physics
 - Supersymmetry
 - High Mass Resonances (Extra Dimensions etc.)

The Higgs Boson

- Electroweak Symmetry breaking
 - caused by scalar Higgs field
- vacuum expectation value of the Higgs field <Φ> =246 GeV/c²
 - gives mass to the W and Z gauge bosons,
 - $M_W \propto g_W < \Phi >$
 - fermions gain a mass by Yukawa interactions with the Higgs field,
 - m_f ∝ g_f<Φ>
 - Higgs boson couplings are proportional to mass
- Higgs boson prevents unitarity violation of WW cross section
 - $\sigma(pp \rightarrow WW) > \sigma(pp \rightarrow anything)$
 - => illegal!
 - At √s=1.4 TeV!

Terms which grow with energy cancel for E >> M_H

This cancellation requires $M_{\rm H} < 800~{\rm GeV}$

The Higgs Boson

- Electroweak Symmetry breaking
 - caused by scalar Higgs field
- vacuum expectation value of the Higgs field $\langle \Phi \rangle$ =246 GeV/c²
 - gives mass to the W and Z gauge bosons,
 - $M_W \propto g_W < \Phi >$
 - fermions gain a mass by Yukawa interactions with the Higgs field,
 - m_f ∝ g_f<Φ>
 - Higgs boson couplings are propertional mass
- Higgs boson prevent was a fill ation of WW cross
 - (pp → anything)

 $A \approx -g^2 \frac{E^2}{M_W^2}$

Terms which grow with energy cancel for $E \gg M_H$

This cancellation requires $M_{\rm H} < 800~{\rm GeV}$

Higgs Production: Tevatron and LHC

dominant: gg→ H, subdominant: HW, HZ, Hqq

Higgs Boson Decay

- Depends on Mass
- M_H<130 GeV/c²:
 - bb dominant
 - WW and ττ subdominant
 - γγ small but useful
- M_H>130 GeV/c²:
 - WW dominant
 - ZZ cleanest

Tevatron Discovery Channels

M(H)>125 GeV: WW is best

M(H)<125 GeV: WH and ZH become important

How to make a Discovery

- This is a tricky business!
 - Lot's of complicated statistical tools needed at some level
- But in a nutshell:
 - Need to show that we have a signal that is inconsistent with being background
 - Number of observed data events: N_{Data}
 - Number of estimated background events: N_{Bq}
 - Need number of observed data events to be inconsistent with background fluctuation:
 - Background fluctuates statistically: √N_{Bg}
 - Significance: $S/\sqrt{B}=(N_{Data}-N_{Bg})/\sqrt{N_{Bg}}$
 - Require typically 5_o, corresponds to probability of statistical fluctuation of 5.7x10⁻⁷
 - Increases with increasing luminosity: S/√B ~ √L
 - All a lot more complex with systematic uncertainties...

A signal emerging with time

 \int Ldt = 0.1 fb⁻¹ (year: 2008/2009)

- Expected Events:
 - N_{higgs}~2, N_{background}=96 +/- 9.8
 - S/√B=0.2
- No sensitivity to signal

A signal emerging with time...

$$\int Ldt = 1 \text{ fb}^{-1} \text{ (year: } \sim 2009)$$

- Expected Events:
 - N_{higgs}~25, N_{background}~960 +/- 30
 - S/√B=0.8
- Still no sensitivity to signal

There it is!

\int Ldt = 30 fb⁻¹ (year: 2011/2012?)

- Expected Events:
 - N_{higgs}~700, N_{background}=28700 +/- 170
 - S/√B=4.1
- Got it!!!

High Mass: m_H>140 GeV

$H \rightarrow WW(*) \rightarrow I^+I^-\sqrt{V}$

-00000000

 Z,γ

 Higgs mass reconstruction impossible due to two neutrinos in final state

 Make use of spin correlations to suppress WW background:

• Higgs is scalar: spin=0

leptons in H → WW^(*) → I⁺I⁻vv are collinear

Main background: WW production

H-WW^(*)·I⁺I⁻ $\nu\nu$ (I=e, μ)

Event selection:

- 2 isolated e/μ:
 - p_T > 15, 10 GeV
- Missing E_T >20 GeV
- Veto on
 - Z resonance
 - Energetic jets

Separate signal from background

- Use discriminant to enhance sensitivity
- Many varieties:
 - "Neural Network", "Boosted Decision Tree", "Likelihood",... (see literature)
- Basically combine many variables into one to exploit as much information as possible

No Higgs Signal found here

High Mass Higgs Signals at LHC

Clean signals on rather well understood backgrounds

Low Mass: m_H<140 GeV

- Tevatron:
 - **■**WH(→bb), ZH(→bb)
- LHC:
 - \blacksquare H(→γγ), qqH(→ττ/WW*), ttH(→bb)

WH-IVbb

- WH selection:
 - 1 or 2 tagged b-jets
 - electron or muon with p_T > 20 GeV
 - E_T^{miss} > 20 GeV

Looking for 2 jets

Expected Numbers of Events

for 2 b-tags:

WH signal: 1.6

Background: 110±25

WH Dijet Mass distributions

- Use discriminant to separate signal from backgrounds:
 - Invariant mass of the two b-jets
 - Signal peaks at m(bb)=m_H
 - Background has smooth distribution
 - More complex:
 - Neural network or other advanced techniques
- Backgrounds still much larger than the signal:
 - Further experimental improvements and luminosity required
 - E.g. b-tagging efficiency (40->60%), *NN/ME selection*, higher lepton acceptance
- Similar analyses for ZH

Tevatron Limits on the Higgs boson cross section

- Lack of observation
 - => an upper limit on the Higgs cross section
 - I.e. if the cross section was large we would have seen it!
- Results presented typically as ratio:
 - Experimental limit / theoretical cross section
 - If this hits 1.0 we exclude the Higgs boson at that mass!
- In this example from CDF only
 - Higgs boson excluded <104 GeV/c²

Tevatron Combined Status

- Combine CDF and DØ analyses from all channels at low and high mass
 - Exclude m_H=158-175 GeV/c² at 95% C.L.
 - m_H=120 GeV/c²: limit/SM=1.5

Higgs at Low Mass: Tevatron vs LHC

$$M_H = 120 \text{ GeV}, 30 \text{ fb}^{-1}$$

WH channel:

- Much larger backgrounds at LHC than at Tevatron
- Use other channels / make harder selections

Low Mass Higgs Signals at LHC

- Main observation channels:
 - H→γγ
 - qqH→qqττ
 - W/Z+H with H->bb
- Discovery is very difficult
 - Requires at least 10 fb⁻¹ (2013?)

LHC SM Higgs Discovery Potential

- Exclusion similar to Tevatron with 1 fb⁻¹ at high mass
- Discovery with L~4 fb⁻¹ at high mass: $m_H>150 \text{ GeV/c}^2$
- Harder at low mass: many channels contribute
- •At latest with 30 fb⁻¹ we will know if Higgs boson exists

How do we know what we have found?

- After discovery we need to check it really is the Higgs boson
- Measure it's properties:
 - The mass
 - The spin (very difficult...)
 - The branching ratio into all fermions
 - Verify coupling to mass
 - The total width (very difficult...)
 - Are there invisible decays?
- Check they are consistent with Higgs boson

Mass

Coupling Measurements at LHC

- Measure couplings of Higgs to as many particles as possible
 - H→ZZ
 - H→WW
 - H→ γγ
 - H→bb
 - H → ττ
- And in different production modes:
 - gg → H (tH coupling)
 - WW → H (WH coupling)
- Verifies that Higgs boson couples to mass

Non Standard-Model Higgs Bosons

Higgs in Supersymmetry (MSSM)

- Minimal Supersymmetric Standard Model:g
 - 2 Higgs-Fields: Parameter tanβ=<H_u>/<H_d>
 - 5 Higgs bosons: h, H, A, H[±]

- Pseudoscalar A
- Scalar H, h
 - Lightest Higgs (h) very similar to SM

MSSM Higgs Selection

- pp $\rightarrow \Phi + X \rightarrow \tau \tau + X$:
 - One τ decays to e or μ
 - One τ decays to hadrons or e/μ
 - They should be isolated
 - Efficiency: ~50%
 - Fake rate ~0.1-1%
 - 10-100 times larger than for muons/ electrons

- Three b-tagged jets
 - E_T>35, 20 and 15 GeV
- Use invariant mass of leading two to discriminate against background

$$\Phi = h/H/A$$

Tau Signals!

- Clear peaks at 1 and 3 tracks:
 - Typical tau signature
- DØ use separate Neural Nets for the two cases:
 - Very good separation of signal and background

Di-tau Mass reconstruction

- Neutrinos from tau-decay escape:
 - No full mass reconstruction possible
- Use "visible mass":
 - Form mass like quantity:
 m_{vis}=m(τ,e/μ, Σ_T)
 - Good separation between signal and background
- Full mass reconstruction possible in boosted system, i.e. if p_T(τ, τ)>20 GeV:
 - Loose 90% of data statistics though!
 - Best is to use both methods in the future

Di-Tau Higgs Boson Search

Data agree with background prediction

Limits on the MSSM Higgs

- Data agree with background
 - Use to put an upper limit on the cross section
 - Translate into SUSY parameter space using theoretical cross section prediction
 - E.g. exclude tanβ>30 for m_A=140 GeV/c²

MSSM Higgs in 3b-jets channel

- Use events with 3 b-jets
- Invariant mass of leading two jets
 - Sensitive to m_A
- Data show an excess near 140 GeV
 - Probability of statistical fluctuation:
 - At 140 GeV: 0.9%
 - Anywhere: 5.7%
- Excess observed as weaker limit near ~140 GeV.
- Analyze more data / check what D0 and LHC find!!

MSSM Higgs Bosons at LHC

30 fb⁻¹

- Similar analysis to the Tevatron experiments can be done at LHC
- With 30 fb⁻¹ probe values of tanβ=15-40 for masses up to 800 GeV

Conclusions

- The Higgs boson is the last missing piece in the Standard Model
 - And arguably the most important SM particle
- Searches ongoing at the Tevatron
 - 95% exclusion in mass range 158-175 GeV
- LHC will find the Higgs boson if it exists
 - With >5σ significance
 - And measure some of it's properties
- If the Higgs boson does not exist
 - Some other mechanism must kick in to prevent unitarity violation => something has to be found at the LHC
- There might be more than one Higgs boson
 - E.g. in supersymmetry
 - They can be found too (hopefully)